C17′	0.9818 (11)	1.0737 (9)	1.4142 (7)	0.0530 (12)
C18′	0.8519 (13)	1.1342 (14)	1.3929 (9)	0.0840 (17)
C19′	0.9665 (14)	0.9470 (12)	1.4586 (7)	0.0780 (17)
C20′	1.0954 (12)	1.1406 (12)	1.4713 (6)	0.0650 (15)

Table 2. Selected bond lengths (Å) and angles (°)

		• • •	
01—N1	1 397 (11)	01'—N1'	1.382 (10)
01 - 07	1 468 (12)	01' - C7'	1.456 (14)
N1_C2	1.100(12)	N1'	1 381 (13)
NI-C2	1.432 (14)	N1' - C6'	1.007 (16)
$\alpha_1 = c_0$	1.452(14)	$\alpha' - \alpha'$	1.407 (10)
02 - 02	1.190 (13)	$C_2 = C_2$	1.203 (13)
C2-C3	1.501 (14)	$C_2 = C_3$	1.389 (13)
C3-C4	1.528 (14)	$C_{3} - C_{4}$	1.4/8 (14)
C3—N14	1.458 (13)	C3 [°] —N14 [°]	1.462 (12)
C4C5	1.523 (15)	$C4^{2} - C5^{2}$	1.511 (17)
C5—C6	1.481 (16)	C5'_C6'	1.511 (19)
O6—C6	1.214 (14)	O6'-C6'	1.190 (17)
C7—C8	1.479 (14)	C7′—C8′	1.543 (16)
C8—C9	1.379 (17)	C8'—C9'	1.351 (16)
C8-C13	1.341 (17)	C8'—C13'	1.398 (17)
C9-C10	1.39 (2)	C9'—C10'	1.372 (18)
C10-C11	1.41 (3)	C10'—C11'	1.40 (2)
C11-C12	1.42 (2)	C11'—C12'	1.31 (2)
C12-C13	1.387 (18)	C12'-C13'	1.338 (19)
N14-C15	1.378 (14)	N14'-C15'	1.320 (13)
015-015	1.200 (12)	Q15'-C15'	1.213 (14)
C15-016	1 335 (12)	C15'016'	1 378 (12)
016_017	1.335 (12)	016' - 017'	1.459 (12)
C17 C18	1.58 (2)	C17' - C18'	1 / 30 (12)
C17 - C10	1.36 (2)	C17 - C18	1.577 (16)
C17 - C19	1.451 (16)	C17 - C19	1.577 (10)
C1/-C20	1.34 (2)	C17 = C20	1.404 (10)
NI	111.5 (7)	N1'01'C7'	113.7 (7)
O1-N1-C2	116.1 (8)	01'—N1'—C2'	111.6 (8)
O1-N1-C6	114.7 (8)	01'—N1'—C6'	116.4 (8)
C2-N1-C6	129.2 (9)	C2'—N1'—C6'	129.1 (9)
N1-C2-O2	118.5 (9)	N1'-C2'-O2'	127.2 (9)
N1-C2-C3	113.4 (8)	N1'-C2'-C3'	110.7 (8)
O2—C2—C3	128.1 (9)	O2'-C2'-C3'	122.1 (9)
C2-C3-C4	112.8 (8)	C2'-C3'-C4'	113.4 (8)
C2-C3-N14	108.8 (8)	C2' - C3' - N14'	112.2 (7)
C4-C3-N14	114.7 (8)	C4' - C3' - N14'	112.3 (8)
C3-C4-C5	108.8 (8)	$C_{3'} - C_{4'} - C_{5'}$	110.7 (9)
C4-C5-C6	112.9 (9)	C4' - C5' - C6'	117.3 (10)
NI	113.8 (9)	N1'-C6'-C5'	1153(11)
N1-C6-06	120.7 (10)	N1'-C6'-O6'	117.7 (12)
C5-C6-06	125.4(10)	C5'C6'O6'	1264(12)
01 - 07 - 08	105 1 (8)	01' - C7' - C8'	108 1 (9)
$C_7 C_8 C_9$	121 2 (10)	C7' - C8' - C9'	110.8 (10)
$C_7 = C_8 = C_{13}$	121.2 (10)	$C_{7}^{\prime} - C_{8}^{\prime} - C_{7}^{\prime}$	119.0 (10)
$C_{1} = C_{0} = C_{13}$	121.0(10)	$C' = C^{*} = C^{*}$	122 1 (10)
$C_{9} = C_{0} = C_{10}$	110.9 (11)	$C_{9} = C_{8} = C_{13}$	122.1 (11)
$C_{8} - C_{9} - C_{10}$	120.3 (13)	$C_{8} = C_{9} = C_{10}$	113.6 (11)
	113.0 (15)		122.4 (12)
	123.1 (15)		117.9 (13)
	110.7 (13)		123.0 (14)
	123.5 (12)	C8 - C13 - C12	118.3 (12)
C3-NI4-CIS	119.6 (8)	$C_3 = N_1 4^\circ = C_1 5^\circ$	118.5 (8)
N14-C15-015	126.6 (10)	015'	127.1 (10)
N14-C15-016	106.6 (8)	015'	124.5 (10)
015—C15—016	126.6 (9)	N14'	108.4 (9)
C15-016-C17	120.1 (8)	C15' —O16' —C17'	121.9 (8)
O16-C17-C18	111.9 (9)	O16'	111.0 (9)
O16—C17—C19	114.9 (10)	O16'—C17'—C19'	110.3 (9)
O16-C17-C20	103.6 (10)	O16'	103.5 (8)
C18—C17—C19	110.2 (11)	C18′—C17′—C19′	107.6 (10)
C18-C17-C20	108.3 (11)	C18′—C17′—C20′	116.7 (10)
C19—C17—C20	107.4 (11)	C19'—C17'—C20'	107.6 (9)

Table 3. Angles (°) between planes in A and B

P1P2	3.0 (8)	P'1-P'3	112.6 (5)
P'1—P'2	171.8 (9)	P2P3	105.3 (7)
P1—P3	107.8 (4)	P4—P'4	149.5 (5)

The structure was determined by direct methods using the program *SHELXS86* (Sheldrick, 1985). Full-matrix least-squares refinement on F magnitudes with anisotropic displacement

©1996 International Union of Crystallography Printed in Great Britain – all rights reserved parameters for non-H atoms and isotropic parameters for H atoms was performed with *SHELX*76 (Sheldrick, 1976). On account of the strong correlations existing between molecules A and B, we have refined the positions and displacement factors of the molecules in different cycles. H atoms were located from difference Fourier maps and refined as riding groups. Illustrations were generated with the program *MACORTEP* (Michalowicz & André, 1991). Dihedral angles were calculated with *Best Planes Program* (Ito & Sugawara, 1983). H-atom positions were calculated.

Lists of structure factors, least-squares-planes data, torsion angles, anisotropic displacement parameters, van der Waals contacts, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1119). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Ito, T. & Sugawara, Y. (1983). Best Planes Program. 3rd Version. The Institute of Physical and Chemical Research, Wako-Shi, Saitama 351, Japan.
- Michalowicz, A. & André, D. (1991). MACORTEP. Logiciels pour la Chimie, pp. 148-149. Paris: Société Française de Chimie.
- Petersen, C. S. (1969). Acta Chem. Scand. 23, 2389-2395.
- Petersen, C. S. (1971). Acta Chem. Scand. 25, 379-389.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1996). C52, 201-203

N-Benzyl-3,4-diphenyl-2-azetidinone

Abdelhamid Mousser,^a Sihem Badeche,^a Hocine Merazig,^a Hadj Benhaoua^b and Djillali Ait Sidhoum^b

^aDépartement de Chimie Inorganic, Institut de Chimie, Université de Constantine, route d'Ain-El-Bey, Constantine 25000, Algeria, and ^bInstitut de Chimie, Université d'Oran, Es-Senia, Algeria

(Received 7 December 1994; accepted 30 March 1995)

Abstract

The crystal structure of *N*-benzyl-3, 4-diphenyl-2azetidinone, $C_{22}H_{19}NO$, shows that the relative configuration of the two chiral centres, C2 and C3, is *trans*. The N—C and C=O bond lengths in the β -lactam amide group are 1.33 (1) and 1.26 (1) Å, respectively. The N atom is displaced 0.032 (9) Å from the plane of its three attached atoms, *i.e.* C1 and C3 of the β -lactam ring, and C16 of the benzyl group.

Comment

The β -lactam ring plays a key role in biological activity and the substituents attached to the ring allow selective activity (Takasuka, Nishikawa & Tori, 1982; Boyd, 1983; Cohen, 1983). Since a complete knowledge of the stereochemistry of the β -lactam ring is required to determine antibiotic activity, the title compound (I) [which was synthesized by the reaction of an imine, an acid chloride and triethylamine in toluene under similar conditions to those used by Alcaide *et al.* (1982)] was structurally characterized.

The aim of the present X-ray structure analysis was to determine the relative configuration of the two chiral centres at C1 and C2. The crystal structure shows that atoms H1(C2) and H2(C3) are in a *trans* conformation, at distances of -0.640 and 0.656 Å, respectively, from the plane of the β -lactam ring composed of atoms N1, C1, C2 and C3. The absolute configuration at C2 and C3 is S. The N1 atom is 0.032 (9) Å above the plane containing atoms C1 and C3 of the β -lactam ring and atom C16 of the benzyl group. The sum of the bond angles about N1 is exactly 360° [C1--N1--C3 98 (1), C1--N1--C16 132 (1) and C3--N1--C16 130 (1)°].

The bond length N1—C1 of 1.33(1)Å is shorter than bond lengths N1—C3 and N1—C16 of 1.41(1)and 1.38(1)Å, respectively, which is in agreement with those observed in previous studies (Pain, Biswas, Bose

Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids.

bond. This is confirmed by the C=O bond length of 1.26(1) Å, which is slightly longer than those found in the literature. The benzyl fragment is nearly planar and is orthogonal to the β -lactam ring, the dihedral angle being 86.01°.

Experimental

The title compound was synthesized by the reaction of PhCH=N- CH_2Ph , PhCH₂C(O)Cl and Et₃N (molar ratio 1:1:2) in toluene for 20 h at 383 K under a nitrogen atmosphere. Recrystallization was from a CH₂Cl₂/*p*-xylene solution.

Crystal data

$C_{22}H_{19}NO$	Cu $K\alpha$ radiation
$M_r = 313.40$	$\lambda = 1.54184 \text{ Å}$
Monoclinic	Cell parameters from 25
<i>P</i> 2 ₁	reflections
$a = 6.798 (4) \text{ Å}_{a}$	$\theta = 8 - 12^{\circ}$
b = 13.675(8)Å	$\mu = 0.5214 \text{ mm}^{-1}$
c = 9.722(7) Å	T = 293 K
$\beta = 99.72 (4)^{\circ}$	Prism
$V = 890.9(1) \text{ Å}^3$	$0.6 \times 0.4 \times 0.2 \text{ mm}$
Z = 2	White
$D_x = 1.168 \text{ Mg m}^{-3}$	
Data collection	
Enraf–Nonius CAD-4	$R_{\rm int} = 0.045$
diffractometer	$\theta_{\rm max} = 53.0^{\circ}$
ω –2 θ scans	$h = -7 \rightarrow 7$
Absorption correction:	$k = 0 \rightarrow 14$
none	$l = 0 \rightarrow 10$
1156 measured reflections	3 standard reflections
1077 independent reflections	frequency: 60 min
795 observed reflections	intensity decay: 3%
$[I > 1.0\sigma(I)]$	
Refinement	
Refinement on F	$\Delta \rho_{\rm max} = 0.177 \ {\rm e} \ {\rm \AA}^{-3}$
R = 0.068	$\Delta \rho_{\rm min} = 0.142 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.078	Extinction correction:
S = 1.448	$F_c = F_c ^2 / (1 + gF_c \text{Lp})$
795 reflections	Extinction coefficient:
217 parameters	$g = 2.7142 \times 10^{-6}$
H-atom parameters not	Atomic scattering factors
refined	from International Tables
$w = 4/[\sigma^2(I) + (PI)^2/I]$	for X-ray Crystallography
$(\Delta/\sigma)_{\rm max} = 0.01$	(1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$B_{\rm eq} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j$$

	х	у	Z	B_{eq}
01	-0.3762 (9)	0.421	-0.0596 (6)	8.1 (2)
N1	-0.086(1)	0.4004 (7)	-0.1572 (8)	8.1 (2)
CI	-0.278 (1)	0.3907 (7)	-0.1502 (9)	7.4 (2)

C2	-0.328 (1)	0.3392 (7)	-0.2883 (9)	7.2 (2)
C3	-0.090(1)	0.3561 (7)	-0.2888 (8)	5.6 (2)
C4	0.036(1)	0.2648 (6)	-0.2883 (8)	5.2 (2)
C5	0.072(1)	0.2035 (6)	-0.1733 (8)	5.4 (2)
C6	0.183 (1)	0.1180 (7)	-0.182 (1)	7.1 (3)
C7	0.248 (1)	0.0938 (7)	-0.301(1)	7.3 (3)
C8	0.211 (2)	0.1551 (8)	-0.413 (1)	7.8 (3)
C9	0.107(1)	0.2410 (8)	-0.4085 (8)	5.9 (2)
C10	-0.478 (1)	0.3843 (7)	-0.4160 (8)	5.7 (2)
C11	-0.484 (1)	0.3511 (7)	-0.5536 (9)	6.3 (2)
C12	-0.596 (1)	0.3934 (9)	-0.6645 (9)	7.5 (3)
C13	-0.717 (1)	0.4735 (9)	-0.639 (1)	8.4 (3)
C14	-0.707(1)	0.5110 (8)	-0.509(1)	7.4 (3)
C15	-0.587 (1)	0.4663 (7)	-0.3946 (9)	6.8 (3)
C16	0.068(1)	0.4457 (8)	-0.0700 (9)	7.0 (3)
C17	0.102(1)	0.5496 (7)	-0.1035 (8)	6.0 (2)
C18	-0.042(1)	0.6063 (7)	-0.1834 (9)	6.3 (2)
C19	-0.003 (2)	0.7049 (8)	-0.2100 (9)	7.8 (3)
C20	0.187 (2)	0.7431 (8)	-0.157 (1)	8.1 (3)
C21	0.331 (2)	0.6878 (9)	-0.081(1)	9.7 (4)
C22	0.289(1)	0.5926 (9)	-0.054 (1)	8.6 (3)

Table 2. Selected geometric parameters (Å, °)

01—C1	1.26(1)	C10-C11	1.41 (1)
N1-C1	1.33(1)	C10-C15	1.38(1)
N1-C3	1.41 (1)	C11—C12	1.34 (2)
N1-C16	1.38 (1)	C12—C13	1.42 (2)
C1-C2	1.50 (2)	C13-C14	1.36 (2)
C2—C3	1.64 (2)	C14-C15	1.40 (2)
C2-C10	1.59 (1)	C16-C17	1.48 (2)
C3—C4	1.51 (1)	C17—C18	1.38 (2)
C4—C5	1.39(1)	C17—C22	1.41 (2)
C4—C9	1.38(1)	C18—C19	1.41 (2)
C5—C6	1.40(1)	C19—C20	1.41 (2)
C6—C7	1.35 (2)	C20-C21	1.35 (2)
C7—C8	1.36 (2)	C21—C22	1.37 (2)
C8—C9	1.38 (2)		
C1-N1-C3	98 (1)	C4—C9—C8	119(1)
C1-N1-C16	132 (1)	C2-C10-C11	122(1)
C3-N1-C16	130(1)	C2-C10-C15	119 (1)
01-C1-N1	130(1)	C11—C10—C15	118 (1)
01-C1-C2	136(1)	C10-C11-C12	123 (1)
N1-C1-C2	94 (1)	C11—C12—C13	117 (1)
C1-C2-C3	82.3 (9)	C12-C13-C14	121(1)
C1-C2-C10	122.1 (9)	C13-C14-C15	120(1)
C3-C2-C10	116.6 (8)	C10-C15-C14	119(1)
N1-C3-C2	85.7 (8)	N1—C16—C17	115 (1)
N1-C3-C4	115 (1)	C16-C17-C18	122 (1)
C2-C3-C4	116.2 (9)	C16-C17-C22	119(1)
C3-C4-C5	121.7 (9)	C18-C17-C22	118(1)
C3—C4—C9	118 (1)	C17-C18-C19	120(1)
C5-C4-C9	120(1)	C18-C19-C20	119(1)
C4C5C6	119 (1)	C19-C20-C21	122 (1)
C5-C6-C7	121 (1)	C20-C21-C22	119 (2)
C6—C7—C8	120(1)	C17—C22—C21	122 (1)
C7—C8—C9	122(1)		

H atoms were included in the refinement at calculated positions with C—H = 0.95 Å.

Data collection and cell refinement: CAD-4 Software (Enraf-Nonius, 1989). The structure was solved by direct methods using MULTAN11/82 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1982). Full-matrix leastsquares refinement was carried out using MolEN (Fair, 1990). Program used to prepare figure: ORTEPII (Johnson, 1976).

References

- Alcaide, B., Leon-Santiago, M. A., Perez-Ossioro, R., Plumet, J., Assierra, M. & de la Torre, M. C. (1982). Synthesis, pp. 989–990.
 Boyd, D. B. (1983). J. Med. Chem. 26, 1010.
- Cohen, N. C. (1983). Actual. Chim. pp. 7–10.
- Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius,
- Delft, The Netherlands. Fair, C. K. (1990). MolEN. An Interactive Intelligent System for
- Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
- Pain, S., Biswas, G., Bose, A. & Banerjee, A. (1992). Acta Cryst. C48, 666–669.
- Takasuka, M., Nishikawa, J. & Tori, K. (1982). J. Antibiot. 35, 1729– 1733.

Vinković, M. & Herak, J. J. (1993). Acta Cryst. C49, 1663-1665.

Acta Cryst. (1996). C52, 203-205

2-Cyano-N-furfuryl-3-(2-furyl)acrylamide

RAMÓN POMÉS HERNÁNDEZ,^a* JULIO DUQUE RODRIGUEZ,^a HÉCTOR NOVOA DE ARMAS^b AND RAÚL A. TOSCANO^c

^aX-ray Laboratory, National Center for Scientific Research, Ave 25 y 158 Cubanicán Playa, PO Box 6990, Havana, Cuba, ^bCenter for Pharmaceutical Chemistry, PO Box 16042, Havana, Cuba, and ^cInstitute of Chemistry, UNAM, PO Box 04510, Mexico

(Received 28 September 1993; accepted 26 June 1995)

Abstract

In the title compound, $C_{13}H_{10}N_2O_3$, the two equivalent molecules in the asymmetric unit form dimers by means of an intermolecular N—H···N hydrogen bond with an N···H distance of 2.42 (2) Å. There are weak intramolecular and intermolecular interactions between the C—H···N and C—H···O atoms. There are no unusual intramolecular distances or angles. The furan rings are rotated 81.1 (2)° relative to each other.

Comment

It is not surprising that many natural products exhibit some bioactivity. In most cases, however, they are not sufficiently active or are too toxic to be of immediate practical use. In such cases, the structures have to be modified for activity enhancement or toxicity reduction, either empirically or more logically, *e.g.* by quan-

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and least-squares-planes data have been deposited with the IUCr (Reference: PA1165). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.